Volume 4, Issue 3, September 2019, Page: 103-112
Diversity and Distribution of Salmonella Isolated from Poultry Offal in Niger (West Africa)
Alio Sanda Abdelkader, Laboratory for Management and Valorization of Biodiversity at Sahel, Faculty of Science and Technology, University Abdou Moumouni of Niamey, Niamey, Niger
Samna Soumana Oumarou, Faculty of Agricultural Sciences and Environment, University of Tillaberi, Tillaberi, Niger
Inoussa Maman Maârouhi, Laboratory for Management and Valorization of Biodiversity at Sahel, Faculty of Science and Technology, University Abdou Moumouni of Niamey, Niamey, Niger
Soumana Abdou Boubacar, Faculty of Agricultural Sciences and Environment, University of Tillaberi, Tillaberi, Niger
Moussa Hassane Ousseini, Laboratory for Management and Valorization of Biodiversity at Sahel, Faculty of Science and Technology, University Abdou Moumouni of Niamey, Niamey, Niger
Bakasso Yacoubou, Laboratory for Management and Valorization of Biodiversity at Sahel, Faculty of Science and Technology, University Abdou Moumouni of Niamey, Niamey, Niger
Received: Jul. 11, 2019;       Accepted: Aug. 30, 2019;       Published: Sep. 18, 2019
DOI: 10.11648/j.ijmb.20190403.16      View  91      Downloads  31
Abstract
Objective: The aim of this study is to determine the prevalence and phenotype diversity of Salmonella isolated from poultry offal in Niger. Methodology and Results: A total of 155 poultries offal consisting of gizzard, liver and spleen were analyzed according to ISO 6579: 2002. Based on these different analyzes, high prevalence of Salmonella from 20% to 69% was found. Serotyping showed the predominance of Derby 42.37% followed by S. Hato 15.25%, S. Chester 10.17%, S. Agona 5.08%, S. Suberu and S. Essen 3.39% each, S. Hessarek and S. Kissangani 1.69% each. Isolated Salmonella strains showed low resistance to antibiotics. Conclusion and perspective: Poultry offal for human consumption has high concentration of Salmonella. This is due to poor hygienic practices of poultry sellers. From these facts, awareness and training measures are necessary. Niger authorities must also build modern slaughterhouses and poultry markets in order to reduce the risk infectious proliferation of diseases such as gastroenteritis and food poisoning.
Keywords
Salmonella, Diversity, Serotypes, Poultry Offal, Niger
To cite this article
Alio Sanda Abdelkader, Samna Soumana Oumarou, Inoussa Maman Maârouhi, Soumana Abdou Boubacar, Moussa Hassane Ousseini, Bakasso Yacoubou, Diversity and Distribution of Salmonella Isolated from Poultry Offal in Niger (West Africa), International Journal of Microbiology and Biotechnology. Vol. 4, No. 3, 2019, pp. 103-112. doi: 10.11648/j.ijmb.20190403.16
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
EFSA Journal (2009). The Community Summary Report on Trends and Sources of Zoonoses and Zoonotic Agents in the European Union in 2007, the EFSA Journal (2009), 223.
[2]
David J. (2009). Attribution des cas de salmonelloses humaines aux différentes filières de production animale en France. Adaptabilité et robustesse du modèle bayésien d'attribution par typage microbiologique. In Cellular Biology. Agrocampus - Ecole Nationale Supérieure d'Agronomie de Rennes: Rennes; 278p.
[3]
EFSA, (European Food Safety Agence) (2011). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2009. EFSA Journal: 9 (3): 2090. [378pp.] doi: 10.2903/j.efsa.2011.2090. Available online: www.efsa.europa.eu/efsajournal.
[4]
ECDC (2013). European Centre for Disease Prevention and Control. Annual Epidemiological Report 2013. Reporting on 2011 surveillance data and 2012 epidemic intelligence data. Stockholm: ECDC; 2013. Pp 103.
[5]
Humphrey TJ, Mead GC, Rowe B. (1988) Poultry meat as a source of human salmonellosis in England and Wales. Epidemiological overview. Epidemiol. Infect. 1988, 100, 175-184.
[6]
Cowden J. M., Chisholm D., O'Mahony M., Lynch D., Mawer S. L., Spain G. E., Ward L., Rowe B. (1989). Two outbreaks of Salmonella Enteritidis phage type 4 infection associated with the consumption of fresh shell-egg products. Epidemiol. Infect. 1989, 103, 47-52.
[7]
Humphrey T. J. (1994) Contamination of egg shell and contents with Salmonella Enteritidis: a review. Int. J. Food Microbiol. 1994, 21, 31-40.
[8]
Poppe, C. (2000). Salmonella infections in the domestic fowl. In "Salmonella in Domestic Animals." (C. Wray and A. Wray, eds.), pp. 107-132. NY: CAB International, New York.
[9]
Hayes S., Nylen G., Smith R., Salmon R. L., Palmer S. R. (1999). Undercooked hens eggs remain a risk factor for sporadic Salmonella enteritidis infection. Commun. Dis. Public. Health., 1999, 2, 66-67.
[10]
Huart A et al (2004). La production de la volaille dans le monde et en Afrique, Eco Congo. Agriculture. Pp1.
[11]
Baeumler, A. J., Hargis, B. M., and Tsolis, R. M. (2000). Tracing the origins of Salmonella outbreaks. Science 287, 50-52.
[12]
Barrow, P. A., Bumstead, N., Marston, K., Lovell, M. A., and Wigley, P. (2004). Faecal shedding and intestinal colonization of Salmonella enterica in in-bred chickens: the effect of host-genetic background. Epidemiol Infect 132, 117-26.
[13]
Keller, L. H., Benson, C. E., Krotec, K., and Ekroade, R. J. (1995). Salmonella Enteritidis colonization of the reproductive tract and forming and freshly laid eggs of chickens. Infect. Immun. 63, 2443–2449.
[14]
Moussa AB, Idi A, Benabdeljelil K, 2010. Aviculture familiale rurale au Niger: alimentation et. performances zootechniques. Aviculture Familiale, 19 (1): 3-10.
[15]
Idi. A and GANDA I O (2009): Revue du secteur avicole au Niger, Organisation des Nations Unies pour l’Alimentation et l’Agriculture (FAO), pp 3
[16]
Morales AS, Fragoso de Araújo J, Túlio de Moura Gomes V, Trindade Reis Costa A, dos Prazeres Rodrigues D, Ferreira TSP (2012). Antibiotic Resistance Associated with Inositol Metabolism in Salmonella from Ontario Cattle. Scientific World Journal: 109795.
[17]
Bonny AC, Karou TG, Atobla K, Bohoua LG, Niamkey LS. (2011). Portage de Salmonella au niveau du gésier cru de poulets exposés à la vente à Abidjan, Côte d’Ivoire. J. Appl. Biosci., 47: 3230-3234.
[18]
Kagambéga A, Haukka K, Sitonen A, Traore A S, Barro N. (2011) Prevalence of Salmonella enterica and the hygiene indicator. Escherichia coli in raw meat at markets in Ouagadougou, Burkina Faso. J. Food Prot., 74: 1547-1551. Doi: 10.1089/fpd.2011.1071.
[19]
Cardinale, E., J. D. Perrier Gros-Claude, F. Tall, E. F. Gueye, and G. Salvat. (2005). Risk factors for contamination of ready-to-eat streetvended poultry dishes in Dakar, Senegal. Int. J. Food Microbiol. 103: 157–165.
[20]
Fuzihara, T. O., Fernandes, S. A. & Franco, B. D. (2000) Prevalence and dissemination of Salmonella serotypes along the slaughtering process in Brazilian small poultry slaughterhouses. Journal of Food Protection, 63: 1749-1753.
[21]
Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R & Bhutta ZA (2009). Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics 10: 36.
[22]
Kagambèga, A. L., Taru, L., Aulu, L., Traoré, A. S., Barro, N., Siitonen, A., Haukka, K., (2013): Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC Microbiology, 13: 253 http://www.biomedcentral.com/1471-2180/13/253. 22.
[23]
Fagbamila IO, Barco L, Mancin M, Kwaga J, Ngulukun SS, Zavagnin P, et al. (2017) Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE 12 (3): e0173097. doi: 10.1371/journal. pone.0173097.
[24]
Tabo DA, Diguimbaye CD, Granier SA, Moury F, Brisabois A, Elgroud R, Millemann Y. (2013). Prevalence and antimicrobial resistance of non-typhoidal Salmonella serotypes isolated from laying hens and broiler chicken farms in N’Djamena, Chad. Vet Microbiol. 2013 Sep 27; 166 (1-2): 293-8. doi: 10.1016/j.vetmic.2013.05.010.
[25]
Mezali L, Taha-Mossadak Hamdi (2011). Prevalence and antimicrobial resistance of Salmonella spp. isolated from raw poultry meat and poultry products in Algiers (Algeria). EggMeat Symposia 2011. High National Veterinary School, BP 161 El-Harrach, Algiers, Algeria.
[26]
Alio Sanda A, Samna Soumana O, Inoussa Maman M, Diallo Bouli A, Bakasso Y. (2017). Prévalence Et Diversité De Salmonella En Afrique: Analyse Qualitative Et Quantitative European Scientific Journal Vol.13, No.30 ISSN: 1857–7881. URL: http://dx.doi.org/10.19044/esj.2017.v13n30p250.
[27]
Alio Sanda A, Samna S. O, Bakasso Y. (2018) Epidemiology, diversity and resistance to antibiotics in Salmonella strains isolated from human in two cities of Niger Republic. International Journal of Current Research. 10, (02), 65364-65370.
[28]
Boyen F, Vangroenweghe F, Butaye P, et al., (2010) Disk prediffusion is a reliable method for testing colistin susceptibility in porcine E. coli strains. Veterinary Microbiology. 2010; 144 (3-4): 359–362.
Browse journals by subject